
Dynamic adaptations in ab-initio nuclear physics calculations on multicore computer
architectures

Avinash Srinivasa
Masha Sosonkina

Ames Laboratory/DOE
Iowa State University
Ames, IA 50011, USA

{avinashs,masha}@scl.ameslab.gov

Pieter Maris
James P. Vary

Physics Department
Iowa State University
Ames, IA 50011, USA

{pmaris,jvary}@iastate.edu

Abstract—Computational resource availability often changes
during the course of execution of an application. This is
especially true in modern multi-user cluster environments
where users can run many high-performance applications
simultaneously which share resources such as Processing Ele-
ments (PEs), I/O, main memory, network. In such a scenario,
it would be greatly advantageous to have applications aug-
mented with adaptive capabilities, particularly during run-
time. This involves targeting a computationally intensive part
of the application and invoking appropriate adaptaions so
as to be able to adjust to the dynamically changing system
conditions, to prevent drastic performance loss. In this paper,
the parallel application MFDn (Many Fermion Dynamics for
nuclear structure) used for ab-initio nuclear physics calcu-
lations is integrated with a middleware tool for invoking
such adaptations. In particular, the multi-threaded Lanczos
diagonalization procedure in MFDn is targeted to observe the
effect on performance of dynamically changing the number
of threads during the iterative process. Performance gains
between two to seven times were observed in the presence
of competing applications by incorporating these adaptation
strategies.

Keywords-MFDn; NICAN; Hybrid MPI/OpenMP; oversub-
scription

I. INTRODUCTION

The direct solution of the quantum many-body problem
transcends several areas of physics and chemistry. Nuclear
physics faces the multiple hurdles of a very strong interac-
tion, three-nucleon interactions, and complicated collective
motion dynamics. The aim is to solve for the structure of
light nuclei addressing all three hurdles simultaneously by
direct diagonalization of the nuclear many-body Hamiltonian
matrix in a harmonic oscillator basis.

A tool to study nuclear structure is the software package
MFDn (Many Fermion Dynamics for nuclear structure)
developed by Vary et al [1], [2], [3], [4], [5] at Iowa State
University. In MFDn, the nuclear Hamiltonian is evaluated
in a large harmonic oscillator basis and diagonalized by
iterative techniques to obtain the low-lying eigenvalues and
eigenvectors. The eigenvectors are then used to evaluate

a suite of experimental quantities to test accuracy and
convergence issues.

MFDn has been shown to have good scaling properties
using the Message Passing Interface (MPI) [6] on existing
supercomputing architectures due to the recent algorithmic
improvements that significantly improved its overall perfor-
mance. In [5], the use of a hybrid MPI/OpenMP approach
[7], [8] has been presented to take advantage of the current
multi-core supercomputing platforms. Under this approach,
MPI and OpenMP [9] are used to communicate among
inter-node and intra-node cores, respectively. The number
of OpenMP threads that are to be spawned per process is
fixed statically at the start of the run and is the same for
every MPI process in the execution. This makes sense when
running on some of the larger supercomputers or leadership
class facilities since here, applications typically get the full
use of the node(s) on which they are running.

However, in the case of most interactive cluster envi-
ronments or cloud computing testbeds, users can run mul-
tiple high performance applications simultaneously. As a
result, computational resource availability can often change
during the run-time of the application. To cope with this,
it might be beneficial to have an adaptive algorithm to
change the number of threads dynamically based on system
information gathered at run-time. However, changing the
source code of an application such as MFDn to insert
these adaptations is not feasible since it will increase the
complexity of the scientific code, which may adversely affect
its accuracy and usability. In such a scenario, there is a
need for some generic middleware which can monitor the
system resources during the execution of the application and
invoke appropriate application adaptations. In this work, the
middleware tool NICAN [10] is used to monitor the number
of threads/processes in the system during the execution of
MFDn. Based on this run-time information gathered, the
number of threads spawned is changed at regular intervals
during the Lanczos diagonalization procedure. (See, e.g., [5]
for a description of the Lanczos algorithm.) This particular
section of the code is chosen for invoking adaptations due

to its iterative and computationally intensive nature.
The main part of this paper is organized as follows.

Section 2 provides an insight into the MFDn code and
outlines the possibility of invoking its dynamic adaptations.
Section 3 describes the need for integrating middleware with
MFDn for invoking adaptations and gives an overview of
the NICAN middleware tool used for this purpose. Section 4
presents the MFDn-NICAN integration model and the details
of the architecture used for integration. Section 5 describes
the experiments carried out along with some performance
results and Section 6 includes concluding remarks.

II. OVERVIEW OF MFDN

The MFDn software is a parallel code for ab initio nuclear
structure calculations written in Fortran90 and MPI, being
actively developed for almost two decades. In the early
development of the code [1] and [2], the main focus has
been efficient use of memory; significant improvements in
its performance have been made over the last 3 years [3],
[4], [5], [11], [12] under the US Department of Energy Sci-
entific Discovery through Advanced Computing (SciDAC)
Program.

The MFDn code computes a few lowest converged so-
lutions, that is, the eigenvalues (energy levels) and eigen-
vectors (wave functions), for the many-nucleon Schrödinger
equation:

H |φ〉 = E |φ〉 . (1)

One key feature of this calculation is the size of the
very large sparse Hamiltonian matrix H it can produce.
The dimension of the matrix characterizes the size of the
many-body basis used to represent a nuclear wave function.
In general, the larger the basis set, the higher the accuracy
of the energy estimation and other computable quantities
one can obtain [13]. MFDn constructs the many-body basis
states, the Hamiltonian matrix, and solves for the lowest
eigenvalues using the Lanczos algorithm. At the end of a run,
it outputs the nuclear wave functions and evaluates selected
physical observables, which can be compared to experimen-
tal data. The matrix is distributed in a 2-dimensional fashion
over the processors, and only the lower triangle is stored
and used, because the matrix is symmetric (and real-valued).
The Lanczos vectors, needed for re-orthogonalization after
every matrix-vector multiplication, are distributed over all
the processors. Because of the 2-dimensional distribution of
the matrix, MFDn runs on n(n+ 1)/2 processors, where n
is the number of diagonal processors.

Since the Lanczos procedure is of particular interest in
this work, an overview of the iterative process is provided
(see Fig. 1). Each iteration consists of a matrix-vector
multiplication, followed by an orthogonalization against all
the previous Lanczos vectors (which are also all stored in
memory, distributed over all processors). After each matrix-
vector multiplication, the resulting vector is accumulated on

the n diagonal processors. Next, this vector is distributed to
all the processors to do the orthogonalization, and finally
the new input vector is distributed to all the processors.
After a fixed number of Lanczos iterations (which is an input
variable), the lowest eigenvalues and the corresponding wave
functions are written to disk from the n diagonal processors.

A. MFDn using Hybrid MPI/OpenMP

Since modern processors are equipped with multiple
cores, applications augmented with multi-threading capa-
bilities can become considerably more efficient by making
use of the multiple cores and overlapping memory access
and communications with computations. To take advantage
of the multiple cores, a hybrid MPI/OpenMP approach for
MFDn has been presented in [5]. It employs multi-threading
using OpenMP directives in the most computationally in-
tensive parts of the code, which are the construction of
the Hamiltonian matrix, the Lanczos iterations, and the
evaluation of observables.

For the Lanczos iterations, the sparse matrix-vector mul-
tiplication is parallelized using an OpenMP DO directive to
loop over the columns. Due to matrix symmetry, each matrix
block is used twice in the multiplication. As a result, each
thread has its own private output vectors for the result of
the transpose matrix-vector multiplication, which are added
inside an OpenMP CRITICAL region. The orthogonalization
of the output vector against all the previous Lanczos vectors
is also parallelized with an OpenMP DO directive. A scaling
plot showing the improvement in computational performance
of MFDn with increase in the number of OpenMP threads
is presented in [5].

By using OpenMP directives as described above, paral-
lelism may be achieved by splitting the computation into
multiple threads of execution. In the current implementation
of the Hybrid MPI/OpenMP approach, the number of threads
spawned for the OpenMP regions is determined statically at
the start of the MFDn run. However, it might be necessary,
during the run, to be able to adapt to the changing system
conditions in terms of computational resource availability. In
light of this, a strategy which involves changing the number
of threads dynamically based on certain information about
the state of the system resources at run-time might very
well prove to be useful, especially in the presence of any
competing applications. This work explores changing the
number of OpenMP threads spawned at the beginning of
every Lanczos iteration (as illustrated in Fig. 1) using system
information gathered at run-time by a middleware engine
integrated with MFDn.

III. USING MIDDLEWARE NICAN WITH APPLICATIONS

While running parallel and distributed applications, the
assumption that the resources are dedicated to running only
the current job may be too restrictive. This is especially
true in the case of interactive cluster environments or cloud

Static thread
allocation

Generate Lanczos

pivot vector
 Dynamic thread
 allocation

Matrix-vector
multiplication

Orthogonalization against
previous vectors

Form new vector

Figure 1. Iterative model for the Lanczos procedure (The Lanczos pivot
vector is the initial working vector required for the first MATVEC)

computing testbeds where users can simultaneously run
different applications sharing resources, such as Processing
Elements (PEs), I/O, main memory, and network. In such
cases, system resource availability often changes during
the course of execution of the application. This calls for
certain run-time adaptations in these applications to be able
to adjust to the dynamically changing system conditions.
However, it is not desirable to insert these adaptations into
the source code of an application, such as MFDn, since
this will increase the complexity of the scientific code with
adverse affects on its accuracy and usability. The latter is
of particular concern since high performance applications
are supposed to run on a computational platform by an
application scientist who may not be an expert in computer
architecture and performance tuning. Hence, there is a need
for a generic middleware tool which can monitor the system
resources and invoke appropriate run-time adaptations for
a large class of applications, so that such a tool may be
quickly geared towards a specific application. While leaving
its main architecture and system monitoring capabilities
intact, the middleware may be augmented by a specific
application module [15], thus acting as an interface between
the hardware and the application execution. In this work,
the middleware tool NICAN [10] developed at Iowa State
University is used to serve as an interface with MFDn.

A. NICAN Overview

The main idea of integrating NICAN with an application
is to decouple the system-related monitoring and decision
making from the execution of the application, while timely
invoking application adaptation functions (handlers). The
NICAN engine is encapsulated into a separate thread, called

Manager, which controls the functional modules and invokes
application adaptations. Due to dynamically loadable mod-
ules, NICAN is versatile and may have a wide variety of
interactions with the system or application. Each module
is designated to perform a separable function, such as to
determine a system runtime characteristics or to validate
machine-dependent parameters. NICAN has a rather general
and flexible interaction mechanism, which permits to talk to
a variety of application codes. Enhanced with general-use
modules, such as CPU monitoring or disk I/O checking,
NICAN may not require customized integration with an
application. However, to explore application-specific trig-
ger conditions, specific-use NICAN modules may also be
needed.

NICAN is mostly used with distributed applications run-
ning on many compute nodes of a cluster. The general
architecture of integration (Fig. 2) involves a single instance
of the Manager on one node, usually on the node on which
the rank 0 (root) process is executing, and an instance of the
daemon module on each of nodes executing the application.
The root node shall henceforth be referred to as the kickoff
node, with the remaining nodes being referred to as remote
nodes. The main function of the daemon module is to act
as an interface between the Manager and the distributed
processes of the application. In some cases, it is also used
to pick up system-related information on the remote nodes,
which is to be relayed to the Manager to aid the decision
making process.

An attractive feature of NICAN is that it does not require
substantial coding modifications to the high-performance
application with which it is interfaced. In the case of MFDn,
only a few changes were made to the source code. Specifi-
cally, they include starting up NICAN, tearing it down, and
the application specific adaptation handler, such as changing
number of threads dynamically based on the information
conveyed by NICAN. Resource monitoring, analysis and
triggering of the adaptive mechanisms are implemented
within the NICAN. Another salient feature of NICAN is
to enable or disable its actions with ease and on-demand by
the application. This fits very well with the idea of NICAN
as a ”black box” from an application scientist’s perspective,
abstracting away the details of its functioning.

IV. INTEGRATION MODEL AND ADAPTATION STRATEGIES

A major benefit of integrating NICAN with an appli-
cation is to separate the system-based monitoring from
the invocation of adaptations which are application related.
The MFDn-NICAN integration may accomplish the goals
described in this work by NICAN monitoring the workload
on a core and deciding the number of threads to be spawned
by MFDn at particular iterations of the Lanczos process.
By collecting the information on the number of running
threads/processes resident in the system, a decision may
be made to change the thread count for the next iteration

NICAN APPLICATION

Proc 1
(Node 1)

 (

Daemon
(Node 2)

Daemon
(Node 3)

Daemon
(Node n)

 Manager
 (Node 1)

Modules
(PE, I/O,
Memory)

Nican_Finalize()

(Node n)

 Adaptation
 invocation

Nican_Initialize()

(Node n)

Daemon
(Node 1)

 (

Proc 2
(Node 2)

 (

Proc 3
(Node 3)

 (

Proc n
(Node n)

 (

Figure 2. General architecture for integration of NICAN with a distributed
application

in order to avoid the oversubscription of a core. The core
oversubscription occurs when more than one thread is run-
ning on the core processing element and has been shown
to be detrimental for the application performance [14]. It is
clear that the oversubscription monitoring and avoidance is a
dynamic process which may not be dealt with effectively us-
ing static tuning and configuration. Thus, dynamic resource
monitoring and interfacing with applications as provided by
NICAN is fully exploited in this work.

A. Oversubscription and context switching

Processors equipped with multiple cores have become
ubiquitous in modern high-performance computers. The
number of cores is growing higher in order to keep up with
Moore’s law, further aggravating the “Memory Wall” which
is caused by the inability of memory access to keep up
with the speed of processing. In such a scenario, to prevent
cores from idling, the use of multi-threading can increase the
efficiency of applications by masking memory accesses and
communications with computations. Having multiple threads
of execution in applications enables to extract thread-level
as well as instruction-level parallelism on modern multi-core
architectures.

The concept of multi-threading brings into light the idea
of context switching. A context switch means storing and
restoring the processor state to resume execution from the
point where the switch occurred. With regard to threads, it
means switching the flow of execution among the different
threads which execute on a single PE core sharing the
same functional units and execution pipeline, in addition to
resources such as caches and TLB (Translation Lookaside
Buffer). The intervals between which context switching
occurs are determined by the operating system scheduler
which usually gives a time slice to each thread/process
before preemption and control switching over to another
thread/process. Context switches can be detrimental to the
performance of a multi-threaded application due to the
scheduler overhead of switching among the threads which
execute on the same core. This process of switched execution

of threads is known as Simultaneous Multi-Threading (SMT)
in operating system parlance.

However, most modern operating systems are well
equipped to handle multi-threading depending on the number
of cores available on a processor. The threads are usually
distributed over the all the cores by the scheduler. This
ensures that they truly execute in parallel, since each PE
core has its own functional units and execution pipeline.
Thus, to exploit the benefits of multi-threading, it is best to
have the number of threads equal to the number of cores. To
have more threads than the number of cores is commonly
known as oversubscription because of the overhead incurred
in context switching among the threads executing on the
same core.

B. Architecture of integration

In MFDn, as per the hybrid MPI/OpenMP approach
presented in [5], MPI is used for distributed memory com-
munication among the nodes with OpenMP being used to
spawn multiple threads within a node. The aim is to increase
efficiency by taking advantage of the multiple cores and
shared memory structure on the node. Under the hybrid
MPI/OpenMP approach on a majority of architectures, we
would want to run MFDn with one MPI process per node
and the number of threads per process equal to the number of
cores on a node to prevent any cores from idling. However,
in realistic situations, there is a possibility of applications,
e.g., run by other users on the same node(s), competing for
the PE resources. This causes context switching to occur
which can be detrimental to the performance of MFDn.
This is especially true when the competing threads/processes
are compute-cycle intensive, as is commonly the case with
large scale scientific applications. Hence, there is a need
to develop strategies for detecting possible oversubscription
during run-time and invoking appropriate adaptations in
MFDn to be able to adjust to the changing system conditions.
In this section, the architecture employed for the MFDn-
NICAN integration is described along with the system moni-
toring and decision making strategies used for the invocation
of adaptations in MFDn. These strategies are sufficiently
general to be employed with other applications.

In Section 3, the general architecture for the integration
of NICAN with an application was explained along with
the main components of the NICAN engine. The same
architecture is employed for the integration with MFDn with
the modules used for system monitoring geared towards the
need to change the number of threads spawned by MFDn
at run-time. Fig. 3 depicts the architecture used for the
integration at the Lanczos stage of MFDn.

The MFDn-NICAN integration model includes a PE
load module which monitors the number of running
threads/processes in the system during the run-time of
MFDn. The main function of this module is to detect if there
is oversubscription on any of the cores due to the presence

of competing applications. This module is loaded by the
NICAN Manager thread, which is started on the kickoff node
and which interfaces with MFDn via the daemon module. A
daemon instance is started on every node which executes the
application. Besides being the Manager’s contact point for
all the NICAN-integrated applications running on the node,
the daemon module also picks up information regarding the
number of threads to be relayed to the Manager.

The Manager uses the thread information obtained from
the PE and daemon modules to make a decision regarding
the number of threads to be spawned by the Lanczos iterative
algorithm at the beginning of an iteration. It then invokes the
appropriate adaptations via the adaptation function. A simple
algorithm is employed for the decision making process.
Define (1) the total number of running threads in the system
as Θs, (2) the number of MFDn threads spawned Θa, (3)
the number of competing application threads Θc and (4)
the number of PE cores per node K, the number of MFDn
threads that should be spawned for the ith iteration for a
particular node is calculated using Algorithm 1.

Algorithm 1 Number of MFDn threads to be spawned at
the ith Lanczos iteration

Θc(i) = Θs(i)−Θa(i− 1)− 1
if Θc(i) ≥ K then

Θa(i) = 1
else

Θa(i) = K −Θc(i)
end if

Θs is found as a result of the monitoring process. K is a
known constant for a node. In the first line of Algorithm 1,
the current number of MFDn threads along with the thread
which does the actual monitoring are subtracted from Θs.
The NICAN thread is very lightweight and hence does not
cause any performance penalty in MFDn due to context
switching.

With regard to implementation, information retrieved
from the /proc/loadavg file is used by the NICAN
modules to find the number of running threads/processes
in the system during the run-time of MFDn. The num-
ber of threads as returned by NICAN after the deci-
sion making process is spawned for a particular itera-
tion by MFDn by making use of the OpenMP func-
tion omp_set_num_threads(numthreads). Here,
numthreads refers to the number of threads to be spawned
for a subsequent OpenMP region. Communication between
NICAN and the distributed processes of MFDn is established
using the TCP/IP socket library.

V. EXPERIMENTATION AND EVALUATION

In this section, the experiments conducted with the
MFDn-NICAN integrated model are presented along with
some results that were observed in terms of improvement in

NICAN MFDn

Proc 1
(Node 1)

 (

Daemon
(Node 2)

Daemon
(Node 3)

Daemon
(Node n)

 Manager
 (Node 1)

PE Load
Module

Daemon
(Node 1)

 (

Proc 2
(Node 2)

 (

Proc 3
(Node 3)

 (

Proc n
(Node n)

 (

Lanczos iterations

 Start iteration

(Node n)

 Spawn threads
 based on result
 from NICAN
 (handler)

 MATVEC and
 orthogonalization

 from NICAN
 (handler)
 End iteration

(Node n)

Figure 3. Architecture of the MFDn-NICAN integration

performance with the inclusion of dynamic adaptations. In
these experiments, the performance of the MFDn-NICAN
code is tested in comparison with MFDn executing in a
cluster environment. The aim is to observe the impact of
changing the number of OpenMP threads spawned dynami-
cally as opposed to running with a fixed number of threads.
The NICAN middleware tool is used to gather information
about the system, in particular, the number of running
threads/processes sharing the PE resources on each node.
Based on this information, a decision is taken by the tool
regarding the number of threads to be spawned which is
then relayed to MFDn at regular intervals to invoke the
appropriate adaptations.

The testbed used for the experiments was the “Dynamo”
cluster consisting of 34 SMP compute nodes, each having
two quad-core 3.0 GHz Intel Xeon E5450 processor chips
and 16 GB of RAM, i.e., equipped with a total of 8 cores
per node and 272 cores overall. The nodes are connected
with both Gigabit Ethernet and DDR Infiniband. In these
experiments, both MFDn and MFDn-NICAN are run for
12C nucleus using six MPI processes, one on each node.
Furthermore, each process spawns eight OpenMP threads,
which is specified at the start of run, thus ensuring that none
of the cores on a node are left idle. For these experiments,
multi-threaded regions are defined only during the Lanczos
iterations with the rest of the code being single threaded.
With MFDn-NICAN, the number of threads is subject to
change during the course of the run depending on the PE
resources available, while it is held constant throughout the
run in the case of pure MFDn. The aims are (1) to consider
the penalty incurred due to context switching in the presence
of any application which competes for the same PE resources
and (2) to show the usefulness of integrating NICAN with
MFDn in coping with such a situation.

The tests were carried out for two problem sizes, Nmax =
2 and Nmax = 4 for the 12C nucleus. The problem size is
characterized by the dimension of the Hamiltonian matrix
which is 17,725 for Nmax = 2 with 1,697,935 non-zero

0

10

20

30

40

50

60

70

Execution

time (s)

0 25 50 75

Competition (%)

MFDn

MFDn-NICAN

Figure 4. Comparison of execution times of MFDn and MFDn-NICAN
for 12C nucleus with Nmax = 2.

0

100

200

300

400

500

600

700

800

900

Execution time

(s)

0 25 50 75

Competition (%)

MFDn

MFDn-NICAN

Figure 5. Comparison of execution times of MFDn and MFDn-NICAN
for 12C nucleus with Nmax = 4.

elements and 1,118,926 for Nmax = 4 with 279,405,126
non-zero elements. In general, as the Nmax value increases,
so does the size of the Hamiltonian matrix yielding more
computationally-intensive and more accurate calculations.
The bar graphs in Fig. 4 and 5 depict performance results
that were obtained for both MFDn and MFDn-NICAN for
these two problem sizes with varying degrees of competition.
The competition is defined as the percentage of the total
(8) cores per node occupied with other high-performance
applications. For the purpose of competition, the quantum
chemistry software GAMESS [16] was used in the direct
configuration which has been shown to be compute-cycle
intensive. GAMESS processes were introduced on the nodes
during the run-time of MFDn and their impact on the
performance for both pure MFDn and MFDn-NICAN was
observed.

From the two graphs (Fig. 4 and 5), it can be clearly
seen that under increasing competition, the performance

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

Number of threads

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Figure 6. Scaling of the Lanczos iterative phase with number of threads
per MPI process.

of MFDn reduces considerably due to context switches
happening on more cores. On the other hand, with MFDn-
NICAN, the performance is much better, being almost equal
to that of MFDn with full resource availability (i.e., with
no competition) for the lower problem size Nmax = 2.
For Nmax = 4, however, the performance of the adaptive
algorithm does not reach the peak performance since with
competition from other applications, it is forced to run on
fewer threads than the maximum possible. This hinders
the performance for larger problem sizes, as in the case
of Nmax = 4 here, that require full power of the node
PE resources. Such a tradeoff is acceptable, however, since
the performance penalty incurred due to context switching
between MFDn and competing applications leads to a much
slower execution. As is evident from the graphs, the penalty
increases with the increase in competition.

Fig. 6 depicts the speedup obtained for the multi-threaded
Lanczos iterative procedure with the number of threads for
the larger problem size Nmax = 4. It can be seen from the
graph that the scaling is not entirely ideal in moving from
2 to 8 threads. This can be attributed to the fact that there
is a significant amount of MPI communication in this phase
of the code which proves to be a performance bottleneck.
Multithreading speeds up the local computations on each
node, but not the MPI communication between the nodes.
The serialization due to the OpenMP CRITICAL region as
explained in Section 2 also contributes to the imperfect
scaling.

Fig. 7 and 8 illustrate the performance of various sections
of the MFDn code, again with different degrees of com-
petition for both the non-adaptive and adaptive algorithms.
This serves to determine which section is incurring the most
performance penalty due to the context switching. This is
again shown for the same two problem sizes i.e., Nmax = 2
and Nmax = 4.

It can be seen that the multithreaded Lanczos iterative

(a) MFDn

(b) MFDn-NICAN

0

10

20

30

40

50

60

70

Execution time(s)

0 25 50 75

Competition (%)

Evaluation of observables

Lanczos iterations

Construction of Matrix

0

1

2

3

4

5

6

7

8

9

Execution time (s)

0 25 50 75

Competition (%)

Evaluation of Observables

Lanczos iterations

Construction of Matrix

Figure 7. Execution times of different sections of the code with different
degrees of competition for 12C nucleus with Nmax = 2.

procedure incurs a higher penalty as the degree of com-
petition increases. Thus, it bears the primary responsibility
for the performance decrease whereas the other sections,
namely, the construction of the Hamiltonian matrix and the
evaluation of observables, which are single-threaded, retain
the same performance even in the presence of competition.
This is not surprising since the multiple threads in the
Lanczos procedure are spread across all the cores and
undergo context switching in the presence of competition
on any of the cores while the calculations in the other two
sections are undisturbed since they enjoy a dedicated core.
(Note that the maximum competition is 75% meaning that
MFDn has always a sole use of at least two cores, on which it
performs the construction of Hamiltonian and the observable
calculation.)

These experiments indicate the usefulness of including
adaptive capabilities in MFDn by dynamically changing the
number of threads to deal with the problems of oversub-
scription and context switching. The advantage of using
a middleware for this purpose, as explained in the earlier
sections, is to decouple the system-related monitoring and
decision making from the execution of the application with-
out incurring much performance and interfacing overhead
for adaptation. The performance gains obtained as a result

(a) MFDn

(b) MFDn-NICAN

0

100

200

300

400

500

600

700

800

900

Execution time (s)

0 25 50 75

Competition (%)

Evaluation of observables

Lanczos iterations

Construction of Matrix

0

50

100

150

200

250

300

350

400

Execution time (s)

0 25 50 75

Competition(%)

Evaluation of observables

Lanczos iterations

Construction of Matrix

Figure 8. Execution times of different sections of the code with different
degrees of competition for 12C nucleus with Nmax = 4.

validate this adaptive approach for MFDn. Since a generic
middleware tool is employed to implement this approach,
the strategies presented here may be extended to other multi-
threaded distributed high performance applications.

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of this work is the inclusion of
dynamic adaptations in MFDn, a large scale parallel code
used for ab-initio nuclear physics calculations, by integrating
it with the middleware tool NICAN. The tool monitors the
system resources during the run-time of MFDn and makes
a decision on the number of threads to be spawned by
the multi-threaded Lanczos procedure during the iterative
process. As a result, MFDn self-adapts to the dynamically
changing system conditions, such as PE resource availability.
In this paper, PE resource availability has been tested using
competing applications that might execute simultaneously in
the non-disjoint subsets of nodes in a cluster environment.

The integration of MFDn with the middleware tool
NICAN proved to be useful for facilitating MFDn adapta-
tions in a non-intrusive manner. Adaptation decision-making
strategies may be implemented in NICAN as application-
specific or general-purpose modules. Such strategies have
been tested with for two different problem sizes for MFDn
by introducing various degrees of competition for the PE

cores of the nodes executing MFDn. The results obtained
validated concern about the multi-threaded application per-
formance degradation in the presence of applications com-
peting for PE resources (cores) even when other resources,
such as memory, suffice. The proposed adaptation strategies
brought about significant performance gains: more than
twofold improvement for very large problem sizes and
surpassing a seven-fold improvement for the problem sizes
that do not place excessive demands on the single-node PE
resources. The adaptation of the number of threads available
to the application to eliminate the context switches by the
operating system is general. Thus, it may be used by a
wide class of applications with a computationally-intensive
iterative calculation.

The system monitoring process employed here is largely
local in nature, in the sense that each node has its own
PE which may be monitored independently. Hence, the
proposed adaptation strategy suits well massively parallel
architectures and may be employed in conjunction with
global performance enhancing techniques thereby creating
a multi-level adaptation. The exploration of hierarchical
adaptations is left as future work.

ACKNOWLEDGMENT

This work was supported in part by Iowa State University
under the contract DE-AC02-07CH11358 with the U.S.
Department of Energy, by the U.S. Department of Energy
under the grants DE-FC02-09ER41582 (UNEDF SciDAC-
2) and DE-FG02-87ER40371 (Division of Nuclear Physics),
by the Director, Office of Science, Division of Mathemati-
cal, Information, and Computational Sciences of the U.S.
Department of Energy under contract number DE-AC02-
05CH11231, and in part by the National Science Foundation
grant NSF/OCI – 0904782.

REFERENCES

[1] J. P. Vary, The Many-Fermion Dynamics Shell-Model Code.
Iowa State University (unpublished) (1992)

[2] J. P. Vary, D. C. Zheng, The Many-Fermion Dynamics Shell-
Model Code. (unpublished) (1994)

[3] P. Sternberg, E.G. Ng, C. Yang, P. Maris, J.P. Vary,
M. Sosonkina, H.V. Le, Accelerating configuration in-
teraction calculations for nuclear structure. In Pro-
ceedings of the 2008 ACM/IEEE Conference on Su-
percomputing, Conference on High Performance Net-
working and Computing, Austin, Texas, November 15
- 21, 2008, pp. 112. IEEE Press, Piscataway (2008),
http://doi.acm.org/10.1145/1413370.1413386

[4] M. Sosonkina, A. Sharda, A. Negoita, J.P. Vary, Integration
of Ab Initio Nuclear Physics Calculations with Optimization
Techniques. In Bubak, M., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp.
833842. Springer, Heidelberg (2008)

[5] P. Maris, M. Sosonkina, J.P. Vary, E.G. Ng, C. Yang, Scaling
of ab-initio nuclear physics calculations on multicore com-
puter architectures. In Procedia Computer Science, Volume
1, Issue 1, May 2010, Pages 97-106, ICCS 2010

[6] M. P. I. Forum, MPI: A message-passing interface standard.
(1994)

[7] E. L. Lusk, A. Chan, Early experiments with the
OpenMP/MPI hybrid programming model. In R. Eigen-
mann, B. R. de Supinski (Eds.), OpenMP in a New Era of
Parallelism, 4th International Workshop, IWOMP 2008, West
Lafayette, IN, USA, May 12-14, 2008, Proceedings, 2008,
pp. 3647

[8] R. Rabenseifner, G. Hager, G. Jost, Hybrid MPI/OpenMP
parallel programming on clusters of multi-core smp nodes.
In D. E. Baz, F. Spies, T. Gross (Eds.), Proceedings of the
17th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing, PDP 2009, Weimar,
Germany, 18-20 Febuary 200, 2009, pp. 427436

[9] L. Dagum, R. Menon, OpenMP: An industry-
standard api for shared-memory programming.
Computing in Science and Engineering 5 (1998) 4655.
doi:http://doi.ieeecomputersociety.org/10.1109/99.660313.

[10] M. Sosonkina, Adapting Distributed Scientific Applications to
Run-time Network Conditions. In J. Dongarra, K. Madsen
and Jerzy Wasniewski, editors, Applied Parallel Computing,
State of the Art in Scientific Computing, 7th International
Workshop, PARA 2004, Revised Selected Papers, volume
3732 of Lecture Notes in Computer Science, pages 745755.
Springer, 2006

[11] J. P. Vary, P. Maris, E. Ng, C. Yang, M. Sosonkina, Ab
initio nuclear structure - the large sparse matrix eigen-
value problem. J. Phys. Conf. Ser. 180 (2009) 012083.
arXiv:0907.0209, doi:10.1088/1742-6596/180/1/012083

[12] N. Laghave, M. Sosonkina, P. Maris, J. P. Vary, Benefits of
parallel i/o in ab initio nuclear physics calculations. In Com-
putational Science - ICCS 2009, 9th International Conference,
Baton Rouge, LA, USA, May 25-27, 2009, Proceedings, Part
I, 2009, pp. 8493.

[13] P. Maris, J. P. Vary, A. M. Shirokov, Ab initio no-core full
configuration calculations of light nuclei. Phys. Rev. C 79,
014308 (2009) arXiv:0808.3420 [nucl-th]

[14] P. Apparao, R. Iyer, D. Newell, Towards Modeling and
Analysis of Consolidated CMP Servers. Workshop on the
Design, Analysis, and Simulation of Chip Multi-Processors
(dasCMP), 2007

[15] N. Ustemirov, M. Sosonkina, M. S. Gordon, M. W. Schmidt,
Dynamic Algorithm Selection in Parallel GAMESS Calcu-
lations. International Conference Workshops on Parallel
Processing, (ICPPW’06)

[16] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert,
M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A.
Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery
Jr, General atomic and molecular electronic structure sys-
tem. Journal of Computational Chemistry, pages 1347-1363,
November 1993

